S520 Homework 2

Enrique Areyan
 January 25, 2012

Chapter 3, Section 7, \#1:
(a) Venn diagram

(b) By simple inspection of the Venn diagram, one can see that the probability is $\mathrm{P}(\mathrm{A}$ and B$)-\mathrm{P}(\mathrm{A}$ and B and C$)$, i.e., subtract from $\mathrm{P}(\mathrm{A}$ and B) those possibilities where C is also found.

$$
P(A \cap B)-P(A \cap B \cap C)=0.29-0.13=0.16
$$

(c) We want to find only A.
$P(A)-P(A \cap B)-P(A \cap C)+P(A \cap B \cap C)=0.8-0.29-0.24+0.13=0.27+0.13=0.40$
(d) $P\left(A^{C} \cap B^{C} \cap C^{C}\right)=P\left((A \cup B \cup C)^{C}\right)=1-P(A \cup B \cup C)=$
$1-(P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+$ $P(A \cap B \cap C))=$
$1-(0.8+0.36+0.28-0.29-0.24-0.16+0.13)=$ $1-(1.44-0.69+0.13)=1-0.88=0.12$
(e) $P\left(A^{c} \cap(B \cup C)\right)=P(B \cup C)-P(B \cap A)-P(C \cap A)+P(A \cap B \cap C)=$ $P(B)+P(C)-P(B \cap C)-P(B \cap A)-P(C \cap A)+P(A \cap B \cap C)=$ $0.36+0.28-0.16-0.29-0.24+0.13=0.08$

Chapter 3, Section 7, \#4: The sample space for this experiment can be defined as:

$$
S=\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right): x_{i} \text { is one of the } 13 \text { models, for } 1 \leq i \leq 5\right\}
$$

This is a finite sample space: $|S|=P(13,5)=13 \cdot 12 \cdot 11 \cdot 10 \cdot 9=154,440$
(a) The event we are dealing with is:

$$
A=\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right): x_{i} \text { is a finalist, for } 1 \leq i \leq 5\right\}
$$

Because this is a finite sample space with equally likely probabilities, this problem reduces to a counting problem. We want to count the number of 5 -tuples containing the finalist and divided by the total number of 5 tuples.

There are two ways to frame this problem: the number of ways of obtaining the finalist is the way of getting them in any order, i.e. $P(5,5)$, thus $P(A)=\frac{\# A}{\# S}=\frac{P(5,5)}{P(13,5)}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}=\frac{1}{13 \cdot 11 \cdot 3 \cdot 3}=\frac{1}{1287}$

Another way would be to count the 5 -tuples but not considering order, i.e. $\frac{1}{\binom{13}{5}}=\frac{1}{\frac{13!}{8!5!}}=\frac{8!5!}{13!}=\frac{5!}{P(13,5)}$. In this case $\# A=1$ because there is only one way of getting the 5 finalist without considering the order.
(b) The event we are looking at is:

$$
B=\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right): \exists x_{i}: x_{i}=\text { Saleisha, for } 1 \leq i \leq 5\right\}
$$

The event B can be seen as the union of the events where Saleisha is draw first, second, third, fourth or fifth. This events are disjoints, so: $P(B)=\frac{5 \cdot P(12,4)}{P(13,5)}=\frac{5}{13}$.

Chapter 3, Section 7, \#8: $\quad P(+\mid D)=0.62$ and $P\left(-\mid D^{c}\right)=0.82$
(a) False positive: $P\left(+\mid D^{c}\right)=1-\left(-\mid D^{c}\right)=1-0.82=0.18$
(b) False negative: $P(-\mid D)=1-(+\mid D)=1-0.62=0.38$

$$
+P(+\mid D) \longrightarrow P(+\cap D)=P(D) \cdot P(+\mid D)=0.05 \cdot 0.62=0.031
$$

$$
D \quad-P(-\mid D)
$$

(c)

$$
D \quad+P\left(+\mid D^{c}\right) \longrightarrow P\left(+\cap D^{c}\right)=P\left(D^{c}\right) \cdot P\left(+\mid D^{c}\right)=0.95 \cdot 0.18=0.171
$$

$$
-P\left(-\mid D^{c}\right)
$$

(d) $P(+)=P(+\cap D)+P\left(+\cap D^{c}\right)=0.031+0.171=0.202$
(e) $P(D \mid+)=\frac{P(+\cap D)}{P(+)}=\frac{P(+\mid D) P(D)}{P(+)}=\frac{0.62 \cdot 0.05}{0.202}=0.1534$

Chapter 3, Section 7, \#11:
(a) Let $A=$ the event that the person is a male, and $B=$ the event that the person is struck by lightning. Then, $P(A \mid B)=$ is the probability of being male given that the person was struck by lightning.
By the data given on the problem, we can estimate $P(A \mid B)=0.85$. Therefore, $P\left(A^{c} \mid B\right)=1-P(A \mid B)=1-0.85=0.15$
(b) We can estimate that $P(A)$ is approximately equal to 0.5 , i.e., there are roughly the same number of males and females in the U.S. It follows that, $P(A \mid B) \not \approx P(A)$ and thus, these events are not independent. Intuitively, we can say that if we know that a person has been struck by lightning, then there is a higher chance this person is a male.
(c) Historically, man have undertaken outdoors activity (e.g., farming, fishing, etc) more so than women, who tended to stay indoor or at home more. Given that lightning usually struck a person that is not inside a building, more man have been at risk of being struck than women. However, as culture changes, and women take similarly responsibilities as man, maybe we can see a change in this tendency in the future.

Chapter 3, Section 7, \#14:
(a) $P(X>0.5)=1-P(X \leq 0.5)=1-F(0.5)=1-\frac{0.5}{3}=1-\frac{1}{6}=\frac{5}{6}$
(b) $P(2<X \leq 3)=P(X \leq 3)-P(X \leq 2)=F(3)-F(2)=1-\frac{2}{3}=\frac{1}{3}$
(c) $P(0.5<X \leq 2.5)=P(X \leq 2.5)-P(X \leq 0.5)=F(2.5)-F(0.5)=$ $\frac{2.5}{3}-\frac{0.5}{3}=\frac{2}{3}$
(d) $P(X=1)=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$ (The jump on the setp function on $X=1$ from $\frac{1}{3}$ to $\frac{2}{3}$

Chapter 3, Section 7, \#15:
(a) $P\left(X_{2} \neq 7 \wedge X_{2} \neq 8\right)=$
$1-P\left(X_{2}=7 \vee X_{2}=7\right)=1-\left(P\left(X_{2}=7\right)+P\left(x_{2}=8\right)\right)=$ $1-\left(\frac{6}{36}+\frac{5}{36}\right)=1-\frac{11}{36}=\frac{25}{36}$
(b) The key observation here is that X_{2} and X_{3} are independent and have the same numerical value, thus the probability is: $\left(\frac{25}{36}\right)^{2}$
(c) Same reasoning as before: $\left(\frac{25}{36}\right)^{3}$
(d) P (The shooter will never roll another 7 or 8$)=\lim _{n \rightarrow \infty}\left(\frac{25}{36}\right)^{n}=0$. Eventually the shooter will roll a 7 or 8 .

